Triangle will probably be the next one. I decided against using rays and did line segments instead. Probably much more broadly viable.
160 lines
3.9 KiB
Text
160 lines
3.9 KiB
Text
|
|
Rect :: #type,distinct Vec(4, RECT_TYPE);
|
|
|
|
Circle :: struct {
|
|
x,y: float;
|
|
r: float;
|
|
#place x;
|
|
pos: Vec2;
|
|
}
|
|
|
|
Line :: struct {
|
|
x0,y0,x1,y1: float;
|
|
#place x0;
|
|
a: Vec2;
|
|
#place x1;
|
|
b: Vec2;
|
|
}
|
|
|
|
make_rect :: (x: RECT_TYPE, y: RECT_TYPE, w: RECT_TYPE, h: RECT_TYPE) -> Rect {
|
|
r: Rect = ---;
|
|
r.x = x;
|
|
r.y = y;
|
|
r.width = w;
|
|
r.height = h;
|
|
return r;
|
|
}
|
|
|
|
cut_left :: (rect: *Rect, want: RECT_TYPE) -> Rect {
|
|
amnt := basic.min(want, rect.width);
|
|
r := rect.*;
|
|
r.width = amnt;
|
|
rect.x += amnt;
|
|
rect.width -= amnt;
|
|
return r;
|
|
}
|
|
|
|
cut_right :: (rect: *Rect, want: RECT_TYPE) -> Rect {
|
|
amnt := basic.min(want, rect.width);
|
|
r := rect.*;
|
|
r.x += rect.width - amnt;
|
|
r.width = amnt;
|
|
rect.width -= r.width;
|
|
return r;
|
|
}
|
|
|
|
cut_top :: (rect: *Rect, want: RECT_TYPE) -> Rect {
|
|
amnt := basic.min(rect.height, want);
|
|
r := rect.*;
|
|
r.height -= amnt;
|
|
rect.y += amnt;
|
|
rect.height -= amnt;
|
|
return r;
|
|
}
|
|
|
|
cut_bottom :: (rect: *Rect, want: RECT_TYPE) -> Rect {
|
|
amnt := basic.min(want, rect.height);
|
|
r := rect.*;
|
|
r.y += r.height - amnt;
|
|
r.height = amnt;
|
|
rect.height -= amnt;
|
|
return r;
|
|
}
|
|
|
|
area :: (r: Rect) -> float {
|
|
return r.width*r.height;
|
|
}
|
|
|
|
area :: (c: Circle) -> float {
|
|
return PI*c.r*c.r;
|
|
}
|
|
|
|
inside :: (r: Rect, p: Vec2) -> bool #symmetric {
|
|
return p.x >= r.x && p.x <= r.x + r.width &&
|
|
p.y >= r.y && p.y <= r.y + r.height;
|
|
}
|
|
|
|
inside :: (c: Circle, p: Vec2) -> bool #symmetric {
|
|
dp := p - c.pos;
|
|
return dp.x*dp.x + dp.y*dp.y <= c.r*c.r;
|
|
}
|
|
|
|
collides :: (c1: Circle, c2: Circle) -> bool {
|
|
dp := c2.pos - c1.pos;
|
|
return c1.r + c2.r >= length(dp);
|
|
}
|
|
|
|
// Note(Jesse): This is using sdfs. Very elegant
|
|
collides :: (c: Circle, r: Rect) -> bool #symmetric {
|
|
// We need to 'transpose' all the math to the origin (centered at 0,0)
|
|
r_center: Vec2 = get_center(r);
|
|
p := r_center - c.pos;
|
|
d: Vec2 = abs(p) - v2f(r.width/2, r.height/2);
|
|
dist := length(max(d, 0.0)) + min(max(d.x, d.y), 0.0);
|
|
dist -= c.r; // 'adding' the distance of the circle
|
|
return dist <= 0.0;
|
|
}
|
|
|
|
// Note(Jesse): Minkowski difference
|
|
collides :: (r1: Rect, r2: Rect) -> bool {
|
|
r: Rect = make_rect(r1.x - r2.width/2, r1.y - r2.width/2, r1.width + r2.width, r1.height + r2.height);
|
|
return inside(r, get_center(r2));
|
|
}
|
|
|
|
collides :: (c: Circle, seg: Line) -> bool #symmetric {
|
|
pa := c.pos - seg.a;
|
|
ba := seg.b - seg.a;
|
|
// Note(Jesse): Using clamp here will cause small segments to collide even when they don't
|
|
h: float = min(max(dot(pa,ba)/dot(ba,ba), 0.0), 1.0);
|
|
dist := length(pa - ba*h);
|
|
return dist - c.r <= 0.0;
|
|
}
|
|
|
|
collides :: (s1: Line, s2: Line) -> bool {
|
|
denom := ((s2.y1 - s2.y0)*(s1.x1 - s1.x0) - (s2.x1 - s2.x0)*(s1.y1 - s1.y0));
|
|
|
|
a := ((s2.x1 - s2.x0)*(s1.y0 - s2.y0) - (s2.y1 - s2.y0)*(s1.x0 - s2.x0));
|
|
b := ((s1.x1 - s1.x0)*(s1.y0 - s2.y0) - (s1.y1 - s1.y0)*(s1.x0 - s2.x0));
|
|
|
|
if denom == 0.0
|
|
return false;
|
|
|
|
a /= denom;
|
|
b /= denom;
|
|
|
|
return (a >= 0 && a <= 1) && (b >= 0 && b <= 1);
|
|
}
|
|
|
|
// Todo(Jesse): I want to find a better line segment rectangle algorithm.
|
|
// one option is a line clipping algorithm. Cohen-Sutherland algorithm
|
|
// would be the best option. It does accepts/rejects fastest
|
|
// but still has a while in it, and a few ifs.
|
|
collides :: (r: Rect, seg: Line) -> bool #symmetric {
|
|
p1 := Vec2.{r.x, r.y};
|
|
p2 := Vec2.{r.x + r.width, r.y};
|
|
p3 := Vec2.{r.x, r.y + r.height};
|
|
p4 := Vec2.{r.x + r.width, r.y + r.height};
|
|
|
|
l1 := Line.{a=p1, b=p2};
|
|
l2 := Line.{a=p1, b=p3};
|
|
l3 := Line.{a=p3, b=p4};
|
|
l4 := Line.{a=p2, b=p4};
|
|
|
|
return collides(seg, l1) || collides(seg, l2) || collides(seg, l3) || collides(seg, l4);
|
|
}
|
|
|
|
///////
|
|
// Helpers and operators
|
|
|
|
get_center :: (r: Rect) -> Vec2 {
|
|
return v2f(r.x + r.width/2, r.y + r.height/2);
|
|
}
|
|
|
|
#scope_file
|
|
|
|
basic :: #import "Basic";
|
|
|
|
#if RUN_TESTS #run,stallable {
|
|
test.run(basic.tprint("%: Vec2", UNITS), t => {
|
|
});
|
|
}
|