Kilobyte :: 1024; Megabyte :: 1024 * Kilobyte; Gigabyte :: 1024 * Megabyte; DefaultAlign :: size_of(*void); /// MemEqual checks the equality of two pieces of memory. /// /// Note: MemEqual will panic if size_in_bytes is negative. MemEqual :: (p1: *void, p2: *void, size_in_bytes: int) -> bool { if size_in_bytes < 0 { Panic("jc: size_in_bytes cannot be negative"); } return memcmp(p1, p2, size_in_bytes) == 0; // Provided by Preload } /// MemCopy copies the memory of src to dst. /// /// Note: MemCopy will panic if size_in_bytes is negative. MemCopy :: (dst: *void, src: *void, size_in_bytes: int) { if size_in_bytes < 0 { Panic("jc: size_in_bytes cannot be negative"); } memcpy(dst, src, size_in_bytes); // Provided by Preload } /// MemOverwrite overwites the memory of p with value. /// /// Note: MemOverwrite will panic if size_in_bytes is negative. MemOverwrite :: (p: *void, size_in_bytes: int, value: u8 = 0) { if size_in_bytes < 0 { Panic("jc: size_in_bytes cannot be negative"); } memset(p, value, size_in_bytes); // Provided by preload } /// MemZero zeroes the memory of p. /// /// Note: MemZero will panic if size_in_bytes is negative. MemZero :: (p: *void, size_in_bytes: int) { MemOverwrite(p, size_in_bytes, 0); } /// MemZero zeroes the memory of p. /// /// Note: MemZero will not call the initializer for aggregate types, /// so you may want MemReset instead. MemZero :: (p: *$T) { MemOverwrite(p, size_of(T), 0); } /// MemReset resets the memory of p, as if it was just instantiated. /// /// Note: MemReset will call the initializer for aggregate types, so you /// may want MemZero instead. MemReset :: (p: *$T) { initializer :: initializer_of(T); #if initializer { inline initializer(p); } else { inline MemZero(p); } } MemAligned :: (p: *void, align: int = DefaultAlign) -> bool { return Aligned(p.(int), align); } MemAlignForward :: (p: *void, align: int = DefaultAlign) -> *void { return AlignForward(p.(int), align).(*void); } MemAlignBackward :: (p: *void, align: int = DefaultAlign) -> *void { return AlignBackward(p.(int), align).(*void); } Aligned :: (a: int, align: int = DefaultAlign) -> bool { return (a & (align - 1)) == 0; } AlignForward :: (a: int, align: int = DefaultAlign) -> int { Assert(PowerOfTwo(align), "jc: must be a power of two"); return (a + align - 1) & ~(align - 1); } AlignBackward :: (a: int, align: int = DefaultAlign) -> int { Assert(PowerOfTwo(align), "jc: must be a power of two"); return a & ~(align - 1); } PowerOfTwo :: (x: int) -> bool { if x == 0 return false; return x & (x - 1) == 0; } NextPowerOfTwo :: (x: int) -> int #no_aoc { Assert(PowerOfTwo(x), "jc: must be a power of two"); // Bit twiddling hacks next power of two x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x |= x >> 32; return x + 1; } TrySetAllocator :: (thing: *$T, allocator := context.allocator) #modify { info := T.(*Type_Info_Struct); ok := false; if info.type == .STRUCT { ok = true; } if ok for info.members if it.name == "allocator" && it.type == Allocator.(*Type_Info) { ok = true; break; } return ok, "can only set allocator on struct with an allocator field or dynamic array"; } #expand { if thing.allocator.proc == null { thing.allocator = allocator; } } TrySetAllocator :: (array: *[..]$T, allocator := context.allocator) #expand { if array.allocator.proc == null { array.allocator = allocator; } }