/* Vec is a generic set of N named values of type T (aka. a mathematical vector) The values can be accessed via array index or their common component names: - u, v, d - x, y, z, w - r, g, b, a - x, y, width, height - min_x, min_y, max_x, max_y - c0, c1, c2, c3, ... cN For most use cases, opt for the named variants of this type: Vec2 : Vec(2, float) Vec3 : Vec(3, float) Vec4 : Vec(4, float) Quat : Vec(4, float) Sadly, Vec does *NOT* solve the problem of interfacing with external vector types (including Jai's 'Math' module). To fix this, create two helper macros: to_jai :: (v: Vec4) -> jmath.Vector4 #expand { return v.(jmath.Vector4,force); } to_jai :: (v: *Vec4) -> *jmath.Vector4 #expand { return v.(*jmath.Vector4); } */ Vec :: struct(N: int, T: Type) #modify { info := T.(*Type_Info); return info.type == .INTEGER || info.type == .FLOAT, "Vec T must be a numeric type (int or float)"; } { #assert (N > 0) "Vec N cannot be <= 0"; // Vecs are backed by an array internally. The #insert block below // generates #place'd unions of named fields or cN fields when N is > 4. #as components: [N]T; #insert -> string { b: basic.String_Builder; basic.append(*b, "#place components;\n"); fields :: []string.[ string.[ "x", "r", "u", "min_x", "" ], string.[ "y", "g", "v", "min_y", "" ], string.[ "z", "b", "d", "max_x", "width" ], string.[ "w", "a", "" , "max_y", "height" ], ]; for i: 0..N - 1 { if i < fields.count { basic.append(*b, "union {\n"); for field: fields[i] if field.count != 0 { basic.print_to_builder(*b, "\t%: T = ---;\n", field); } basic.print_to_builder(*b, "\tc%: T = ---;\n", i); basic.append(*b, "};\n"); } else { basic.print_to_builder(*b, "c%: T = ---;\n", i); } } // compound accessors basic.append(*b, "#place components;\n"); if N >= 4 { basic.append(*b, "union {\n"); basic.append(*b, "\txy: Vec2 = ---;\n"); basic.append(*b, "\txyz: Vec3 = ---;\n"); basic.append(*b, "};"); } else if N >= 3 { basic.append(*b, "xy: T = ---;\n"); } // Vec4 row accessors (Possibly becoming/used as SIMD lanes) if N/4 > 1 { basic.append(*b, "#place components;\n"); basic.print_to_builder(*b, "v4: [%]Vec4 = ---;\n", N/4); } // Matrix Accessors if N == 4 { // Mat2 basic.append(*b, "#place components;\n"); for i: 0..3 { basic.print_to_builder(*b, "_%0%: T = ---;\n", i/2, i%2); } } if N == 16 { // Mat4 basic.append(*b, "#place components;\n"); for i: 0..15 { basic.print_to_builder(*b, "_%0%: T = ---;\n", i/4, i%4); } } return basic.builder_to_string(*b); }; } operator [] :: (v: Vec, $$idx: int) -> v.T #no_abc { meta.check_bounds(idx, v.N); return v.components[idx]; } operator *[] :: (v: *Vec, $$idx: int) -> *v.T #no_abc { meta.check_bounds(idx, v.N); return *v.components[idx]; } operator []= :: (v: *Vec, $$idx: int, value: v.T) #no_abc { meta.check_bounds(idx, v.N); v.components[idx] = value; } for_expansion :: (v: *Vec, body: Code, flags: For_Flags) #expand { for i: 0..v.N - 1 { `it_index := i; #if flags & .POINTER { `it := *v.components[i]; } else { `it := v.components[i]; } #insert,scope(body) body; } } operator + :: inline (l: Vec, r: Vec(l.N, l.T)) -> Vec(l.N, l.T) #no_abc { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = l.x + r.x; res.y = l.y + r.y; #if l.N >= 3 then res.z = l.z + r.z; #if l.N == 4 then res.w = l.w + r.w; // @todo(jesse): SIMD } else { for l res[it_index] = it + r[it_index]; } return res; } operator - :: inline (l: Vec, r: Vec(l.N, l.T)) -> Vec(l.N, l.T) #no_abc { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = l.x - r.x; res.y = l.y - r.y; #if l.N >= 3 then res.z = l.z - r.z; #if l.N == 4 then res.w = l.w - r.w; // @todo(jesse): SIMD } else { for l res[it_index] = it - r[it_index]; } return res; } operator * :: inline (l: Vec, r: Vec(l.N, l.T)) -> Vec(l.N, l.T) #no_abc { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = l.x*r.x; res.y = l.y*r.y; #if l.N >= 3 then res.z = l.z*r.z; #if l.N == 4 then res.w = l.w*r.w; // @todo(jesse): SIMD } else { for l res[it_index] = it * r[it_index]; } return res; } operator / :: inline (l: Vec, r: Vec(l.N, l.T)) -> Vec(l.N, l.T) #no_abc { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = l.x/r.x; res.y = l.y/r.y; #if l.N >= 3 then res.z = l.z/r.z; #if l.N == 4 then res.w = l.w/r.w; // @todo(jesse): SIMD } else { for l res[it_index] = it / r[it_index]; } return res; } operator + :: inline (l: Vec, r: $R) -> Vec(l.N, l.T) #no_abc #symmetric #modify { return meta.type_is_scalar(R), "type is not integer or float"; } { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = l.x + r; res.y = l.y + r; #if l.N >= 3 then res.z = l.z + r; #if l.N == 4 then res.w = l.w + r; // @todo(jesse): SIMD } else { for l res[it_index] = it + r; } return res; } operator - :: inline (l: Vec, r: $R) -> Vec(l.N, l.T) #no_abc #modify { return meta.type_is_scalar(R), "type is not integer or float"; } { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = l.x - r; res.y = l.y - r; #if l.N >= 3 then res.z = l.z - r; #if l.N == 4 then res.w = l.w - r; // @todo(jesse): SIMD } else { for l res[it_index] = it - r; } return res; } operator - :: inline (l: $R, r: Vec) -> Vec(l.N, l.T) #no_abc #modify { return meta.type_is_scalar(R), "type is not integer or float"; } { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = l - r.x; res.y = l - r.y; #if r.N >= 3 then res.z = l - r.z; #if r.N == 4 then res.w = l - r.w; // @todo(jesse): SIMD } else { for l res[it_index] = r - it; } return res; } operator- :: inline(v: Vec) -> Vec(v.N, v.T) #no_abc { res: Vec(v.N, v.T) = ---; #if v.N <= 4 { res.x = -v.x; res.y = -v.y; #if v.N >= 3 then res.z = -v.z; #if v.N == 4 then res.w = -v.w; // @todo(jesse): SIMD } else { for v res[it_index] = -it; } return res; } operator * :: inline (l: Vec, r: $R) -> Vec(l.N, l.T) #no_abc #symmetric #modify { return meta.type_is_scalar(R), "type is not integer or float"; } { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = l.x*r; res.y = l.y*r; #if l.N >= 3 then res.z = l.z*r; #if l.N == 4 then res.w = l.w*r; // @todo(jesse): SIMD } else { for l res[it_index] = it*r; } return res; } operator / :: inline (l: Vec, r: $R) -> Vec(l.N, l.T) #no_abc #modify { return meta.type_is_scalar(R), "type is not integer or float"; } { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = l.x/r; res.y = l.y/r; #if l.N >= 3 then res.z = l.z/r; #if l.N == 4 then res.w = l.w/r; // @todo(jesse): SIMD } else { for l res[it_index] = it/r; } return res; } operator == :: inline (l: Vec, r: Vec(l.N, l.T)) -> bool #no_abc { #if l.N <= 4 { res: bool = l.x == r.x && l.y == r.y; #if l.N >= 3 then res &= l.z == r.z; #if l.N == 4 then res &= l.w == r.w; // @todo(jesse): SIMD return res; } else { for l if it != r[it_index] return false; return true; } } min :: (l: Vec, r: Vec(l.N, l.T)) -> Vec(l.N, l.T) #no_abc { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = ifx l.x < r.x then l.x else r.x; res.y = ifx l.y < r.y then l.y else r.y; #if l.N >= 3 then res.z = ifx l.z < r.z then l.z else r.z; #if l.N == 4 then res.w = ifx l.w < r.w then l.w else r.w; // @todo(jesse): SIMD } else { n := l.N - 1; while n >= 0 { if l[n] < r[n] res[n] = l[n]; else res[n] = r[n]; n -= 1; } } return res; } max :: (l: Vec, r: Vec(l.N, l.T)) -> Vec(l.N, l.T) #no_abc { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = ifx l.x > r.x then l.x else r.x; res.y = ifx l.y > r.y then l.y else r.y; #if l.N >= 3 then res.z = ifx l.z > r.z then l.z else r.z; #if l.N == 4 then res.w = ifx l.w > r.w then l.w else r.w; // @todo(jesse): SIMD } else { n := l.N - 1; while n >= 0 { if l[n] > r[n] res[n] = l[n]; else res[n] = r[n]; n -= 1; } } return res; } min :: (l: Vec, r: l.T) -> Vec(l.N, l.T) #no_abc { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = ifx l.x > r then l.x else r; res.y = ifx l.y > r then l.y else r; #if l.N >= 3 then res.z = ifx l.z > r.z then l.z else r; #if l.N == 4 then res.w = ifx l.w > r.w then l.w else r; // @todo(jesse): SIMD } else { n := l.N - 1; while n >= 0 { if l[n] > r res[n] = l[n]; else res[n] = r; n -= 1; } } return res; } max :: (l: Vec, r: l.T) -> Vec(l.N, l.T) #no_abc { res: Vec(l.N, l.T) = ---; #if l.N <= 4 { res.x = ifx l.x < r then l.x else r; res.y = ifx l.y < r then l.y else r; #if l.N >= 3 then res.z = ifx l.z < r then l.z else r; #if l.N == 4 then res.w = ifx l.w < r then l.w else r; // @todo(jesse): SIMD } else { n := l.N - 1; while n >= 0 { if l[n] < r res[n] = l[n]; else res[n] = r; n -= 1; } } return res; } // @todo(jesse): SIMD ceil :: (l: Vec) -> Vec(l.N, l.T) #no_abc { r: Vec(l.N, l.T) = ---; n := l.N - 1; sign: float; while n >= 0 { int_part := l[n].(int); add_part := ifx l[n] > int_part.(float) then 1.0 else 0.0; r[n] = int_part + add_part; n -= 1; } return r; } // @todo(jesse): SIMD floor :: (l: Vec) -> Vec(l.N, l.T) #no_abc { r: Vec(l.N, l.T) = ---; n := l.N - 1; sign: float; while n >= 0 { int_part := l[n].(int); sub_part := ifx l[n] < int_part.(float) then 1.0 else 0.0; r[n] = int_part - sub_part; n -= 1; } return r; } clamp :: (v: Vec, low: v.T, high: v.T) -> Vec(v.N, v.T) #no_abc { r: Vec(v.N, v.T) = ---; n := v.N - 1; while n >= 0 { if v[n] < low r[n] = low; else if v[n] > high r[n] = high; else r[n] = v[n]; n -= 1; } return r; } dot :: (a: Vec, b: Vec(a.N, a.T)) -> a.T #no_abc { sum: a.T; n := a.N - 1; while n >= 0 { sum += a[n]*b[n]; n -= 1; } return sum; } length_squared :: (v: Vec) -> float #no_abc { return inline dot(v, v); } length :: (v: Vec) -> float #no_abc { return math.sqrt(inline dot(v, v)); } abs :: (v: Vec) -> Vec(v.N, v.T) #no_abc { r: Vec(v.N, v.T) = ---; n := v.N - 1; while n >= 0 { if v[n] < 0 r[n] = -v[n]; else r[n] = v[n]; n -= 1; } return r; } // @todo(Jesse): SIMD norm :: normalize; normalize :: (v: Vec) -> Vec(v.N, v.T) #no_abc { inv_len := 1.0/length(v); return inv_len*v; } lerp :: (a: Vec, b: Vec(a.N, a.T), t: float) -> Vec(a.N, a.T) #no_abc { r: Vec(a.N, a.T) = ---; n := a.N - 1; while n >= 0 { r[n] = a[n] + t*(b[n] - a[n]); n -= 1; } return r; } // Note(Jesse): I don't think this is needed for bigger vectors reflect :: (v: Vec3, p: Vec3) -> Vec3 #no_abc { projection := p*dot(v, p)/length_squared(p); return 2*projection - v; } reflect :: (v: Vec2, p: Vec2) -> Vec2 #no_abc { projection := p*dot(v, p)/length_squared(p); return 2*projection - v; } round :: (v: Vec($N, $T)) -> Vec(N, T) #no_abc #modify { return meta.type_is_float(T), "Used non-float vector on round"; } { r: Vec(N, T) = ---; n := N - 1; while n >= 0 { if v[n] < 0 r[n] = (v[n] - 0.5).(int).(float); else r[n] = (v[n] + 0.5).(int).(float); n -= 1; } return r; } // Concrete vector types (the usual cases) Vec2 :: Vec(2, float); Vec3 :: Vec(3, float); Vec4 :: Vec(4, float); Quat :: #type,distinct Vec4; // Note(Jesse): I Had to make this distinct, otherwise operators stomp on eachother v2f :: (x: $T = 0, y: T = 0) -> Vec2 #modify { return meta.type_is_float(T), "use v2i for integer arguments"; } #expand { return .{ x = x, y = y }; } v2i :: (x: $T = 0, y: T = 0) -> Vec(2, T) #modify { return meta.type_is_integer(T), "use v2f for float arguments"; } #expand { return .{ x = x, y = y }; } v3f :: (x: $T = 0, y: T = 0, z: T = 0) -> Vec3 #modify { return meta.type_is_float(T), "use v3i for integer arguments"; } #expand { return .{ x = x, y = y, z = z }; } v3i :: (x: $T = 0, y: T = 0, z: T = 0) -> Vec(3, T) #modify { return meta.type_is_integer(T), "use v3f for float arguments"; } #expand { return .{ x = x, y = y, z = z }; } v4f :: (x: $T = 0, y: T = 0, z: T = 0, w: T = 0) -> Vec4 #modify { return meta.type_is_float(T), "use v4i for integer arguments"; } #expand { return .{ x = x, y = y, z = z, w = w }; } v4f :: (v: Vec3, $$w: float) -> Vec4 #expand { return .{ xyz=v, w=w }; } v4i :: (x: $T = 0, y: T = 0, z: T = 0, w: T = 0) -> Vec(4, T) #modify { return meta.type_is_integer(T), "use v4f for float arguments"; } #expand { return .{ x = x, y = y, z = z, w = w }; } quat :: (x: float = 0, y: float = 0, z: float = 0, w: float = 1) -> Quat #expand { return .{ x = x, y = y, z = z, w = w }; } quat :: (xyz: Vec3, w: float) -> Quat #expand { return .{xyz=xyz, w=w}; } quat_identity :: Quat.{x=0, y=0, z=0, w=1}; operator* :: (a: Quat, b: Quat) -> Quat { r: Quat = ---; r.xyz = a.w*b.xyz + b.w*a.xyz + cross(a.xyz, b.xyz); r.w = a.w*b.w - dot(a.xyz, b.xyz); return r; } operator* :: (q: Quat, v: Vec3) -> Vec3 #symmetric { r: Vec3 = 2*cross(q.xyz, v); return v + q.w*r + cross(q.xyz, r); } operator* :: (q: Quat, r: $T) -> Quat #symmetric { return .{x=q.x*r, y=q.y*r, z=q.z*r, w=q.w*r}; } operator+ :: (a: Quat, b: Quat) -> Quat { return .{x=a.x*b.x, y=a.y*b.y, z=a.z*b.z, w=a.w*b.w}; } operator/ :: (l: Quat, r: $T) -> Quat { return .{xyz=l.xyz/r, w=l.w/r}; } operator== :: (l: Quat, r: Quat) -> bool { return l.x == r.x && l.y == r.y && l.z == r.z && l.w == r.w; } conjugate :: (q: Quat) -> Quat #expand { r: Quat = ---; r.xyz = -q.xyz; r.w = q.w; return r; } // Note(Jesse): iff q is a unit vector inverse_unit :: (q: Quat) -> Quat { return inline conjugate(q); } inverse :: (q: Quat) -> Quat { return conjugate(q)/length(q); } rotation_quat :: (theta: float, axis: Vec3) -> Quat { q: Quat = ---; a := normalize(axis); q.xyz = sin(theta/2.0)*a; q.w = cos(theta/2.0); return q; } operator- :: (q: Quat) -> Quat { r: Quat = ---; r.x = -q.x; r.y = -q.y; r.z = -q.z; r.w = -q.w; return r; } length_squared :: (q: Quat) -> float { return dot(q, q); } length :: (q: Quat) -> float { return math.sqrt(dot(q, q)); } dot :: (a: Quat, b: Quat) -> float { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; } slerp :: (a: Quat, _b: Quat, t: float) -> Quat { b := _b; cos_a := dot(a, b); if cos_a < 0.0 { cos_a = -cos_a; b = -b; } alpha := math.acos(cos_a); sin_a := math.sin(alpha); p1 := math.sin((1-t)*alpha)/sin_a; p2 := math.sin(t*alpha)/sin_a; return a*p1 + b*p2; } cross :: (a: Vec3, b: Vec3) -> Vec3 { v: Vec3 = ---; v.x = a.y*b.z - a.z*b.y; v.y = a.z*b.x - a.x*b.z; v.z = a.x*b.y - a.y*b.x; return v; } #scope_file meta :: #import "jc/meta"; math :: #import "Math"; // @future basic :: #import "Basic"; // @future