Reorganize everything #2

Merged
judah merged 6 commits from rejigger into master 2025-09-06 07:07:00 +00:00
5 changed files with 510 additions and 53 deletions
Showing only changes of commit 19bbf2abfd - Show all commits

18
INBOX
View file

@ -2,6 +2,18 @@
Put any questions for me in here! Put any questions for me in here!
[Jesse] [Jesse]
08.21.25 Judah
I'm going to do a pretty big reorg of the repo. I'll be working in a separate branch for the time being so it shouldn't have an effect on you. When I merge this back into master I'll move your changes/modules over to the new structure.
General reasoning is that I'm not happy with how I've organized everything. I went a little too Odin-like with the modules which makes them annoying to use in projects:
- What does it mean to import meta vs meta/foo?
- WITH_SUBMODULES works but relies on a half-baked jai feature
- modules are tangled in such a way that making a change in one could break N
How I'm fixing this:
- base module (jc) imports most things you'd always want (memory allocation, strings, arrays, hash tables, macros, etc.)
- x, ext, and math stay the same
- other freestanding modules (say: encoding, math) are expected to be imported directly. None of this math/linalg or encoding/json nonsense
05.31.25 Jesse 05.31.25 Jesse
platform/arch merge sounds good, we can keep that going. No thoughts so far on that. platform/arch merge sounds good, we can keep that going. No thoughts so far on that.
The caching is a good idea, I wonder if we should make them enum_flags. The caching is a good idea, I wonder if we should make them enum_flags.
@ -14,9 +26,3 @@
it to add a 'SIMD' constant that we set for it to add a 'SIMD' constant that we set for
targets that will almost always support SIMD targets that will almost always support SIMD
instructions; unsure for now. instructions; unsure for now.
05.22.25 Judah
Instead of going with a separate 'arch' module, I
think we can roll that into the future 'platform'
module instead. There's enough overlap that I
think it makes sense. Let me know what you think,
thanks!

View file

@ -92,6 +92,22 @@ abs :: (v: $T) -> T
return ifx v < 0 then -v else v; return ifx v < 0 then -v else v;
} }
sign :: (x: int) -> int {
if x < 0
return -1;
else if x > 0
return 1;
return 0;
}
sign :: (x: float) -> float {
if x < 0.0
return -1.0;
else if x > 0.0
return 1.0;
return 0.0;
}
#scope_file #scope_file
#import "jc"; #import "jc";

View file

@ -1,3 +1,4 @@
Mat2 :: #type,distinct Vec(2 * 2, float); Mat2 :: #type,distinct Vec(2 * 2, float);
Mat4 :: #type,distinct Vec(4 * 4, float); Mat4 :: #type,distinct Vec(4 * 4, float);
@ -155,27 +156,7 @@ make_look_at :: (camera: Vec3, at: Vec3, up_vector: Vec3) -> Mat4
} }
operator* :: (a: Mat4, b: Mat4) -> Mat4 { operator* :: (a: Mat4, b: Mat4) -> Mat4 {
r: Mat4 = ---; return mul_sse(a, b);
r._00 = a._00*b._00 + a._01*b._10 + a._02*b._20 + a._03*b._30;
r._01 = a._00*b._01 + a._01*b._11 + a._02*b._21 + a._03*b._31;
r._02 = a._00*b._02 + a._01*b._12 + a._02*b._22 + a._03*b._32;
r._03 = a._00*b._03 + a._01*b._13 + a._02*b._23 + a._03*b._33;
r._10 = a._10*b._00 + a._11*b._10 + a._12*b._20 + a._13*b._30;
r._11 = a._10*b._01 + a._11*b._11 + a._12*b._21 + a._13*b._31;
r._12 = a._10*b._02 + a._11*b._12 + a._12*b._22 + a._13*b._32;
r._13 = a._10*b._03 + a._11*b._13 + a._12*b._23 + a._13*b._33;
r._20 = a._20*b._00 + a._21*b._10 + a._22*b._20 + a._23*b._30;
r._21 = a._20*b._01 + a._21*b._11 + a._22*b._21 + a._23*b._31;
r._22 = a._20*b._02 + a._21*b._12 + a._22*b._22 + a._23*b._32;
r._23 = a._20*b._03 + a._21*b._13 + a._22*b._23 + a._23*b._33;
r._30 = a._30*b._00 + a._31*b._10 + a._32*b._20 + a._33*b._30;
r._31 = a._30*b._01 + a._31*b._11 + a._32*b._21 + a._33*b._31;
r._32 = a._30*b._02 + a._31*b._12 + a._32*b._22 + a._33*b._32;
r._33 = a._30*b._03 + a._31*b._13 + a._32*b._23 + a._33*b._33;
return r;
} }
// Note(Jesse): If you want to make it symmetric go ahead, I usually don't // Note(Jesse): If you want to make it symmetric go ahead, I usually don't
@ -402,7 +383,194 @@ inverse :: (m: Mat4) -> Mat4 {
} }
// Note(Jesse): While this is surprisingly faster in debug, in release the naive
// implementation and the sse version are disappointingly very similar in cycle count.
// This is even more confusing as the naive when optimized still uses single single arithmatic,
// while we're using packed single arithmatic
mul_sse :: inline (a: Mat4, b: Mat4) -> Mat4 {
r: Mat4 = ---;
#asm {
r0: vec;
r1: vec;
r2: vec;
r3: vec;
// Loading
movups a_0:, [*a ];
movups a_1:, [*a + 16];
movups a_2:, [*a + 32];
movups a_3:, [*a + 48];
movups b_0:, [*b ];
movups b_1:, [*b + 16];
movups b_2:, [*b + 32];
movups b_3:, [*b + 48];
// row0
// We're using pshufd because shufps references 'a' in the lower, and 'b' in the upper.
// pshufd only reference a_0. So shufps gets from both the dest and the src registers
pshufd r0, a_0, 0x00;
pshufd r1, a_0, 0x55;
pshufd r2, a_0, 0xaa;
pshufd r3, a_0, 0xff;
mulps r0, b_0;
mulps r1, b_1;
mulps r2, b_2;
mulps r3, b_3;
addps r0, r1;
addps r2, r3;
addps r0, r2;
movups [*r], r0;
// row1
pshufd r0, a_1, 0x00;
pshufd r1, a_1, 0x55;
pshufd r2, a_1, 0xaa;
pshufd r3, a_1, 0xff;
mulps r0, b_0;
mulps r1, b_1;
mulps r2, b_2;
mulps r3, b_3;
addps r0, r1;
addps r2, r3;
addps r0, r2;
movups [*r + 16], r0;
// row2
pshufd r0, a_2, 0x00;
pshufd r1, a_2, 0x55;
pshufd r2, a_2, 0xaa;
pshufd r3, a_2, 0xff;
mulps r0, b_0;
mulps r1, b_1;
mulps r2, b_2;
mulps r3, b_3;
addps r0, r1;
addps r2, r3;
addps r0, r2;
movups [*r + 32], r0;
// row3
pshufd r0, a_3, 0x00;
pshufd r1, a_3, 0x55;
pshufd r2, a_3, 0xaa;
pshufd r3, a_3, 0xff;
mulps r0, b_0;
mulps r1, b_1;
mulps r2, b_2;
mulps r3, b_3;
addps r0, r1;
addps r2, r3;
addps r0, r2;
movups [*r + 48], r0;
}
// r._00 = a._00*b._00 + a._01*b._10 + a._02*b._20 + a._03*b._30;
// r._01 = a._00*b._01 + a._01*b._11 + a._02*b._21 + a._03*b._31;
// r._02 = a._00*b._02 + a._01*b._12 + a._02*b._22 + a._03*b._32;
// r._03 = a._00*b._03 + a._01*b._13 + a._02*b._23 + a._03*b._33;
// r._10 = a._10*b._00 + a._11*b._10 + a._12*b._20 + a._13*b._30;
// r._11 = a._10*b._01 + a._11*b._11 + a._12*b._21 + a._13*b._31;
// r._12 = a._10*b._02 + a._11*b._12 + a._12*b._22 + a._13*b._32;
// r._13 = a._10*b._03 + a._11*b._13 + a._12*b._23 + a._13*b._33;
// r._20 = a._20*b._00 + a._21*b._10 + a._22*b._20 + a._23*b._30;
// r._21 = a._20*b._01 + a._21*b._11 + a._22*b._21 + a._23*b._31;
// r._22 = a._20*b._02 + a._21*b._12 + a._22*b._22 + a._23*b._32;
// r._23 = a._20*b._03 + a._21*b._13 + a._22*b._23 + a._23*b._33;
// r._30 = a._30*b._00 + a._31*b._10 + a._32*b._20 + a._33*b._30;
// r._31 = a._30*b._01 + a._31*b._11 + a._32*b._21 + a._33*b._31;
// r._32 = a._30*b._02 + a._31*b._12 + a._32*b._22 + a._33*b._32;
// r._33 = a._30*b._03 + a._31*b._13 + a._32*b._23 + a._33*b._33;
return r;
}
// Note(Jesse): This procedure will crash if it tries to store or access an element across a cache line
mul_sse_aligned :: inline (dst: *Mat4, a: *Mat4, b: *Mat4) {
// Todo(Jesse): Find out what we want to do for debug checks
// assert(is_aligned(dst, 64) && is_aligned(a, 64) && is_aligned(b, 64), "If you use this procedure, dst, a, and b's base pointer must be aligned to a 64 byte boundary");
#asm {
r0: vec;
r1: vec;
r2: vec;
r3: vec;
// Loading
movaps a_0:, [a ];
movaps a_1:, [a + 16];
movaps a_2:, [a + 32];
movaps a_3:, [a + 48];
movaps b_0:, [b ];
movaps b_1:, [b + 16];
movaps b_2:, [b + 32];
movaps b_3:, [b + 48];
// row0
// We're using pshufd because shufps references 'a' in the lower, and 'b' in the upper.
// pshufd only reference a_0. So shufps gets from both the dest and the src registers
pshufd r0, a_0, 0x00;
pshufd r1, a_0, 0x55;
pshufd r2, a_0, 0xaa;
pshufd r3, a_0, 0xff;
mulps r0, b_0;
mulps r1, b_1;
mulps r2, b_2;
mulps r3, b_3;
addps r0, r1;
addps r2, r3;
addps r0, r2;
movaps [dst], r0;
// row1
pshufd r0, a_1, 0x00;
pshufd r1, a_1, 0x55;
pshufd r2, a_1, 0xaa;
pshufd r3, a_1, 0xff;
mulps r0, b_0;
mulps r1, b_1;
mulps r2, b_2;
mulps r3, b_3;
addps r0, r1;
addps r0, r2;
addps r0, r3;
movaps [dst + 16], r0;
// row2
pshufd r0, a_2, 0x00;
pshufd r1, a_2, 0x55;
pshufd r2, a_2, 0xaa;
pshufd r3, a_2, 0xff;
mulps r0, b_0;
mulps r1, b_1;
mulps r2, b_2;
mulps r3, b_3;
addps r0, r1;
addps r0, r2;
addps r0, r3;
movaps [dst + 32], r0;
// row3
pshufd r0, a_3, 0x00;
pshufd r1, a_3, 0x55;
pshufd r2, a_3, 0xaa;
pshufd r3, a_3, 0xff;
mulps r0, b_0;
mulps r1, b_1;
mulps r2, b_2;
mulps r3, b_3;
addps r0, r1;
addps r0, r2;
addps r0, r3;
movaps [dst + 48], r0;
}
}
#scope_file; #scope_file;
is_aligned :: (p: *void, bound: int) -> bool {
return cast(int)p & (bound - 1) == 0;
}
#if RUN_TESTS #run { #if RUN_TESTS #run {
Test(basic.tprint("%: Mat2", UNITS), t => { Test(basic.tprint("%: Mat2", UNITS), t => {

View file

@ -1,8 +1,7 @@
Rect :: #type,distinct Vec(4, RECT_TYPE); Rect :: #type,distinct Vec(4, RECT_TYPE);
Circle :: struct { Circle :: struct {
x,y: float; x,y,r: float;
r: float;
#place x; #place x;
pos: Vec2; pos: Vec2;
} }
@ -13,8 +12,14 @@ Line :: struct {
a: Vec2; a: Vec2;
#place x1; #place x1;
b: Vec2; b: Vec2;
#place x0;
e: [2]Vec2;
} }
Triangle :: [3]Vec2;
ORIGIN :: Vec2.{.[0, 0]};
make_rect :: (x: RECT_TYPE, y: RECT_TYPE, w: RECT_TYPE, h: RECT_TYPE) -> Rect { make_rect :: (x: RECT_TYPE, y: RECT_TYPE, w: RECT_TYPE, h: RECT_TYPE) -> Rect {
r: Rect = ---; r: Rect = ---;
r.x = x; r.x = x;
@ -78,6 +83,20 @@ inside :: (c: Circle, p: Vec2) -> bool #symmetric {
return dp.x*dp.x + dp.y*dp.y <= c.r*c.r; return dp.x*dp.x + dp.y*dp.y <= c.r*c.r;
} }
inside :: (t: Triangle, p: Vec2) -> bool #symmetric {
cay := t[2].y - t[0].y;
pay := p.y - t[0].y;
cax := t[2].x - t[0].x;
bay := t[1].y - t[0].y;
bax := t[1].x - t[0].x;
denom := bay*cax - bax*cay;
w1 := t[0].x*cay + pay*cax - p.x*cay;
w1 /= denom;
w2 := (p.y - t[0].y - w1*bay)/cay;
return w1 >= 0 && w2 >= 0 && w1 + w2 <= 1;
}
collides :: (c1: Circle, c2: Circle) -> bool { collides :: (c1: Circle, c2: Circle) -> bool {
dp := c2.pos - c1.pos; dp := c2.pos - c1.pos;
return c1.r + c2.r >= length(dp); return c1.r + c2.r >= length(dp);
@ -85,18 +104,18 @@ collides :: (c1: Circle, c2: Circle) -> bool {
// Note(Jesse): This is using sdfs. Very elegant // Note(Jesse): This is using sdfs. Very elegant
collides :: (c: Circle, r: Rect) -> bool #symmetric { collides :: (c: Circle, r: Rect) -> bool #symmetric {
// We need to 'transpose' all the math to the origin (centered at 0,0) // We need to 'transpose' all the math to the origin the center of the circle acting as the origin (0, 0)
r_center: Vec2 = get_center(r); r_center: Vec2 = get_center(r);
p := r_center - c.pos; p := r_center - c.pos;
d: Vec2 = abs(p) - v2f(r.width/2, r.height/2); d: Vec2 = abs(p) - Vec2.{.[r.width/2, r.height/2]};
dist := length(max(d, 0.0)) + min(max(d.x, d.y), 0.0); dist := length(max(d, 0.0)) + min(max(d.x, d.y), 0.0);
dist -= c.r; // 'adding' the distance of the circle dist -= c.r; // 'adding' the distance of the circle
return dist <= 0.0; return dist <= 0.0;
} }
// Note(Jesse): Minkowski difference // Note(Jesse): Minkowski difference but instead of the origin we check if the other rectangle center
collides :: (r1: Rect, r2: Rect) -> bool { collides :: (r1: Rect, r2: Rect) -> bool {
r: Rect = make_rect(r1.x - r2.width/2, r1.y - r2.width/2, r1.width + r2.width, r1.height + r2.height); r: Rect = Rect.{.[r1.x - r2.width/2, r1.y - r2.width/2, r1.width + r2.width, r1.height + r2.height]};
return inside(r, get_center(r2)); return inside(r, get_center(r2));
} }
@ -124,22 +143,224 @@ collides :: (s1: Line, s2: Line) -> bool {
return (a >= 0 && a <= 1) && (b >= 0 && b <= 1); return (a >= 0 && a <= 1) && (b >= 0 && b <= 1);
} }
// Todo(Jesse): I want to find a better line segment rectangle algorithm. // Cohen-sutherland's line clipping algorithm
// one option is a line clipping algorithm. Cohen-Sutherland algorithm collides :: (r: Rect, l: Line) -> bool #symmetric {
// would be the best option. It does accepts/rejects fastest INSIDE :: 0b0000;
// but still has a while in it, and a few ifs. LEFT :: 0b0001;
collides :: (r: Rect, seg: Line) -> bool #symmetric { RIGHT :: 0b0010;
p1 := Vec2.{r.x, r.y}; BOTTOM :: 0b0100;
p2 := Vec2.{r.x + r.width, r.y}; TOP :: 0b1000;
p3 := Vec2.{r.x, r.y + r.height};
p4 := Vec2.{r.x + r.width, r.y + r.height};
l1 := Line.{a=p1, b=p2}; compute_out_code :: (x: float, y: float) -> int #expand {
l2 := Line.{a=p1, b=p3}; code := INSIDE;
l3 := Line.{a=p3, b=p4}; if x < xmin
l4 := Line.{a=p2, b=p4}; code |= LEFT;
else if x > xmax
code |= RIGHT;
if y < ymin
code |= BOTTOM;
else if y > ymax
code |= TOP;
return code;
}
return collides(seg, l1) || collides(seg, l2) || collides(seg, l3) || collides(seg, l4); xmin := r.x;
xmax := r.x + r.width;
ymin := r.y;
ymax := r.y + r.height;
x0 := l.a.x;
y0 := l.a.y;
x1 := l.b.x;
y1 := l.b.y;
oc0 := compute_out_code(l.a.x, l.a.y);
oc1 := compute_out_code(l.b.x, l.b.y);
accept: bool;
while true {
if !(oc0 | oc1) {
accept = true;
break;
}
else if oc0 & oc1 {
break;
}
else {
x, y: float = ---;
oc_out := ifx oc1 > oc0 then oc1 else oc0;
// find intersection point;
// slope = (y1 - y0)/(x1 - x0)
// x = x0 + (1/slope)*(ym - y0), ym is ymin or ymax
// y = y0 + slope*(xm - x0), xm is xmin or xmax
// outcode bit guarantees the denom is non-zero
if oc_out & TOP {
x = x0 + (x1 - x0)*(ymax - y0)/(y1 - y0);
y = ymax;
}
else if oc_out & BOTTOM {
x = x0 + (x1 - x0)*(ymin - y0)/(y1 - y0);
y = ymin;
}
else if oc_out & RIGHT {
y = y0 + (y1 - y0)*(xmax - x0)/(x1 - x0);
x = xmax;
}
else {
y = y0 + (y1 - y0)*(xmin - x0)/(x1 - x0);
x = xmin;
}
// Move outside points to intersection point
if oc_out == oc0 {
x0 = x;
y0 = y;
oc0 = compute_out_code(x0, y0);
}
else {
x1 = x;
y1 = y;
oc1 = compute_out_code(x1, y1);
}
}
}
return accept;
}
// Triangle SDF with the circle position inplace of the origin and a circle expansion of the sdf
collides :: (t: Triangle, c: Circle) -> bool #symmetric {
e0 := t[1] - t[0];
e1 := t[2] - t[1];
e2 := t[0] - t[2];
v0 := c.pos - t[0];
v1 := c.pos - t[1];
v2 := c.pos - t[2];
pq0 := v0 - e0*min(max(dot(v0,e0)/dot(e0,e0), 0.0), 1.0);
pq1 := v1 - e1*min(max(dot(v1,e1)/dot(e1,e1), 0.0), 1.0);
pq2 := v2 - e2*min(max(dot(v2,e2)/dot(e2,e2), 0.0), 1.0);
s := sign(e0.x*e2.y - e0.y*e2.x);
d := min(min(Vec2.{.[dot(pq0,pq0), s*(v0.x*e0.y - v0.y*e0.x)]},
Vec2.{.[dot(pq1,pq1), s*(v1.x*e1.y - v1.y*e1.x)]}),
Vec2.{.[dot(pq2,pq2), s*(v2.x*e2.y - v2.y*e2.x)]});
dist := -math.sqrt(d.x)*sign(d.y);
return dist < c.r;
}
collides :: (t: Triangle, r: Rect) -> bool #symmetric {
p1 := Vec2.{.[r.x, r.y]};
p2 := Vec2.{.[r.x + r.width, r.y]};
p3 := Vec2.{.[r.x, r.y + r.height]};
p4 := Vec2.{.[r.x + r.width, r.y + r.height]};
rt1: Triangle = .[p1, p4, p2];
rt2: Triangle = .[p1, p3, p4];
if collides(t, rt1) || collides(t, rt2)
return true;
return false;
}
collides :: (t1: Triangle, t2: Triangle) -> bool {
return inline gjk(t1, t2);
}
collides :: (t: Triangle, l: Line) -> bool #symmetric {
return inline gjk(t, l.e);
}
// Note(Jesse): 2D
gjk :: (s1: []Vec2, s2: []Vec2) -> bool {
S: Simplex2D;
S.a = gjk_support(s1, s2, s1[0] - s2[0]);
d := -S.a; // This makes a vector from S.a towards the origin (ORIGIN - S.a)
S.points = 1;
while true {
A := gjk_support(s1, s2, d);
if !same_dir(A, d) // If A is even towards the origin. Otherwise there's no way they intersect
return false;
S.points += 1;
S.c = S.b; // we want S.a to be the newest point. S.c is the oldest
S.b = S.a;
S.a = A;
if gjk_do_simplex(*S, *d)
return true;
}
return false;
}
#scope_file
basic :: #import "Basic";
// Used with gjk, not for general use
Simplex2D :: struct {
a,b,c: Vec2;
points: int;
}
// Used with gjk. Simplified for 2D
triple_cross :: inline (a: Vec2, b: Vec2, c: Vec2) -> Vec2 {
// return cross(cross(v3(a, 0), v3(b, 0)), v3(c, 0)).xy;
return Vec2.{.[-a.x*b.y*c.y + a.y*b.x*c.y, a.x*b.y*c.x - a.y*b.x*c.x]};
}
// Sets the direction for the next support function based on the simplex we have and how it's orientated
// to the origin: 0, 0. Because we know which point was added last (S.a) we can deduce directions we don't
// have to check
gjk_do_simplex :: (S: *Simplex2D, dir: *Vec2) -> bool {
if S.points == {
case 2;
AB := S.b - S.a;
AO := -S.a;
if same_dir(AB, AO) {
dir.* = triple_cross(AB, AO, AB);
}
else {
dir.* = AO;
S.points = 1;
}
case 3;
AO := -S.a;
// Because this is 2D, we don't need a large 3 point simplex case, or a 4 point case
AB := S.b - S.a;
AC := S.c - S.a;
abperp := triple_cross(AC, AB, AB);
acperp := triple_cross(AB, AC, AC);
if same_dir(abperp, AO) {
S.points = 2;
dir.* = abperp;
}
else if same_dir(acperp, AO) {
S.b = S.c;
S.points = 2;
dir.* = acperp;
}
else {
return true; // origin must be inside the triangle
}
}
return false;
}
// Returns the vertex furthest along the dir vector for two polygons. We could split it up
// to take something that can't be represented by a list of points, like a circle.
gjk_support :: inline (a: []Vec2, b: []Vec2, dir: Vec2) -> Vec2 {
helper :: (t: []Vec2, dir: Vec2) -> Vec2 {
p := t[0];
best := dot(t[0], dir);
for 1..t.count - 1 {
v := t[it];
if dot(t[it], dir) > best {
best = dot(v, dir);
p = v;
}
}
return p;
}
v := helper(a, dir);
w := helper(b, -dir);
return v - w;
} }
/////// ///////
@ -149,9 +370,48 @@ get_center :: (r: Rect) -> Vec2 {
return v2f(r.x + r.width/2, r.y + r.height/2); return v2f(r.x + r.width/2, r.y + r.height/2);
} }
#scope_file
basic :: #import "Basic";
#if #exists(RUN_TESTS) #run { #if #exists(RUN_TESTS) #run {
// Just a formality to get proper compile errors
b: bool;
r1 := Rect.{.[100, 150, 250, 250]};
c1 := Circle.{150, 500, 50};
l1 := Line.{400, 100, 650, 150};
t1: Triangle;
t1[0] = v2f(600.0, 500.0);
t1[1] = v2f(650.0, 250.0);
t1[2] = v2f(625.0, 200.0);
p: Vec2 = v2f(100.0, 100.0);
r2 := Rect.{.[100, 100, 10, 10]};
c2 := Circle.{100, 100, 10};
l2 := Line.{100, 100, 200, 200};
t2: Triangle;
t2[0] = v2f(50.0, 50.0 + 20.0);
t2[1] = v2f(50.0 + 20.0, 50.0 - 20.0);
t2[2] = v2f(50.0 - 20.0, 50.0 - 20.0);
b |= inside(r1, p);
b |= collides(r1, r2);
b |= collides(r1, l2);
b |= collides(r1, c2);
b |= collides(r1, t2);
b |= inside(c1, p);
b |= collides(c1, r2);
b |= collides(c1, l2);
b |= collides(c1, c2);
b |= collides(c1, t2);
b |= collides(l1, r2);
b |= collides(l1, l2);
b |= collides(l1, c2);
b |= collides(l1, t2);
b |= inside(t1, p);
b |= collides(t1, r2);
b |= collides(t1, l2);
b |= collides(t1, c2);
b |= collides(t1, t2);
} }

View file

@ -371,7 +371,7 @@ max :: (l: Vec, r: l.T) -> Vec(l.N, l.T) #no_abc {
return res; return res;
} }
// @todo(jesse): SIMD // @todo(jesse): SIMD?
ceil :: (l: Vec) -> Vec(l.N, l.T) #no_abc { ceil :: (l: Vec) -> Vec(l.N, l.T) #no_abc {
r: Vec(l.N, l.T) = ---; r: Vec(l.N, l.T) = ---;
n := l.N - 1; n := l.N - 1;
@ -385,7 +385,7 @@ ceil :: (l: Vec) -> Vec(l.N, l.T) #no_abc {
return r; return r;
} }
// @todo(jesse): SIMD // @todo(jesse): SIMD?
floor :: (l: Vec) -> Vec(l.N, l.T) #no_abc { floor :: (l: Vec) -> Vec(l.N, l.T) #no_abc {
r: Vec(l.N, l.T) = ---; r: Vec(l.N, l.T) = ---;
n := l.N - 1; n := l.N - 1;
@ -651,6 +651,13 @@ cross :: (a: Vec3, b: Vec3) -> Vec3 {
return v; return v;
} }
same_dir :: (a: Vec2, b: Vec2) -> bool {
return dot(a, b) > 0;
}
same_dir :: (a: Vec3, b: Vec3) -> bool {
return dot(a, b) > 0;
}
#scope_file; #scope_file;
#if RUN_TESTS #run,stallable { #if RUN_TESTS #run,stallable {