Added vector operations

This commit is contained in:
jesse 2025-05-20 20:11:01 -07:00
parent 2b42519e30
commit 7f444c14e1

View file

@ -119,6 +119,182 @@ operator / :: inline (l: Vec, r: Vec(l.N, l.T)) -> Vec(l.N, l.T) #no_abc {
return res; return res;
} }
operator + :: inline (l: Vec, r: $R) -> Vec(l.N, l.T) #no_abc #symmetric
#modify { return is_type_scalar(R), "type is not integer or float"; } {
res: Vec(l.N, l.T) = ---;
for l res[it_index] = it + r;
return res;
}
operator - :: inline (l: Vec, r: $R) -> Vec(l.N, l.T) #no_abc
#modify { return is_type_scalar(R), "type is not integer or float"; } {
res: Vec(l.N, l.T) = ---;
for l res[it_index] = it - r;
return res;
}
operator - :: inline (l: $R, r: Vec) -> Vec(l.N, l.T) #no_abc
#modify { return is_type_scalar(R), "type is not integer or float"; } {
res: Vec(l.N, l.T) = ---;
for l res[it_index] = r - it;
return res;
}
operator * :: inline (l: Vec, r: $R) -> Vec(l.N, l.T) #no_abc #symmetric
#modify { return is_type_scalar(R), "type is not integer or float"; } {
res: Vec(l.N, l.T) = ---;
for l res[it_index] = it*r;
return res;
}
operator / :: inline (l: Vec, r: $R) -> Vec(l.N, l.T) #no_abc
#modify { return is_type_scalar(R), "type is not integer or float"; } {
res: Vec(l.N, l.T) = ---;
for l res[it_index] = it/r;
return res;
}
operator == :: inline (l: Vec, r: Vec(l.N, l.T)) -> bool #no_abc {
for l if it != r[it_index] return false;
return true;
}
min :: (l: Vec, r: Vec(l.N, l.T)) -> Vec(l.N, l.T) #no_abc {
res: Vec(l.N, l.T) = ---;
n := l.N - 1;
while n >= 0 {
if l[n] < r[n]
res[n] = l[n];
else
res[n] = r[n];
n -= 1;
}
return res;
}
max :: (l: Vec, r: Vec(l.N, l.T)) -> Vec(l.N, l.T) #no_abc {
res: Vec(l.N, l.T) = ---;
n := l.N - 1;
while n >= 0 {
if l[n] > r[n]
res[n] = l[n];
else
res[n] = r[n];
n -= 1;
}
return res;
}
ceil :: (l: Vec, x: l.T) -> Vec(l.N, l.T) #no_abc {
r: Vec(l.N, l.T) = ---;
n := l.N - 1;
while n >= 0 {
if x < l[n]
r[n] = x;
else
r[n] = l[n];
n -= 1;
}
return r;
}
floor :: (l: Vec, x: l.T) -> Vec(l.N, l.T) #no_abc {
r: Vec(l.N, l.T) = ---;
n := l.N - 1;
while n >= 0 {
if x > l[n]
r[n] = x;
else
r[n] = l[n];
n -= 1;
}
return r;
}
clamp :: (v: Vec, low: v.T, high: v.T) -> Vec(v.N, v.T) #no_abc {
r: Vec(v.N, v.T) = ---;
n := v.N - 1;
while n >= 0 {
if v[n] < low
r[n] = low;
else if v[n] > high
r[n] = high;
else
r[n] = v[n];
n -= 1;
}
return r;
}
dot :: (a: Vec, b: Vec(a.N, a.T)) -> a.T #no_abc {
sum: a.T;
n := a.N - 1;
while n >= 0 {
sum += a[n]*b[n];
n -= 1;
}
return sum;
}
length_squared :: (v: Vec) -> float #no_abc {
return dot(v, v);
}
length :: (v: Vec) -> float #no_abc {
return math.sqrt(dot(v, v));
}
abs :: (v: Vec) -> Vec(v.N, v.T) #no_abc {
r: Vec(v.N, v.T) = ---;
n := v.N - 1;
while n >= 0 {
if v[n] < 0
r[n] = -v[n];
else
r[n] = v[n];
n -= 1;
}
return r;
}
norm :: normalize;
normalize :: (v: Vec) -> Vec(v.N, v.T) #no_abc {
return v/length(v);
}
lerp :: (a: Vec, b: Vec(a.N, a.T), t: float) -> Vec(a.N, a.T) #no_abc {
r: Vec(a.N, a.T) = ---;
n := a.N - 1;
while n >= 0 {
r[n] = a[n] + t*(b[n] - a[n]);
n -= 1;
}
return r;
}
// Note(Jesse): I don't think this is needed for bigger vectors
reflect :: (v: Vec3, p: Vec3) -> Vec3 #no_abc {
projection := p*dot(v, p)/length_squared(p);
return 2*projection - v;
}
reflect :: (v: Vec2, p: Vec2) -> Vec2 #no_abc {
projection := p*dot(v, p)/length_squared(p);
return 2*projection - v;
}
round :: (v: Vec($N, $T)) -> Vec(N, T) #no_abc
#modify { return is_type_float(T), "Used non-float vector on round"; } {
r: Vec(N, T) = ---;
n := N - 1;
while n >= 0 {
if v[n] < 0
r[n] = (v[n] - 0.5).(int).(float);
else
r[n] = (v[n] + 0.5).(int).(float);
n -= 1;
}
return r;
}
// Concrete vector types (the usual cases) // Concrete vector types (the usual cases)
Vec2 :: Vec(2, float); Vec2 :: Vec(2, float);
@ -127,37 +303,37 @@ Vec4 :: Vec(4, float);
Quat :: Vec4; Quat :: Vec4;
v2f :: (x: $T = 0, y: T = 0) -> Vec2 v2f :: (x: $T = 0, y: T = 0) -> Vec2
#modify { return T.(*Type_Info).type == .FLOAT, "use v2i for integer arguments"; } #modify { return is_type_float(T), "use v2i for integer arguments"; }
#expand { #expand {
return .{ x = x, y = y }; return .{ x = x, y = y };
} }
v2i :: (x: $T = 0, y: T = 0) -> Vec(2, T) v2i :: (x: $T = 0, y: T = 0) -> Vec(2, T)
#modify { return T.(*Type_Info).type == .INTEGER, "use v2f for float arguments"; } #modify { return is_type_integer(T), "use v2f for float arguments"; }
#expand { #expand {
return .{ x = x, y = y }; return .{ x = x, y = y };
} }
v3f :: (x: $T = 0, y: T = 0, z: T = 0) -> Vec3 v3f :: (x: $T = 0, y: T = 0, z: T = 0) -> Vec3
#modify { return T.(*Type_Info).type == .FLOAT, "use v3i for integer arguments"; } #modify { return is_type_float(T), "use v3i for integer arguments"; }
#expand { #expand {
return .{ x = x, y = y, z = z }; return .{ x = x, y = y, z = z };
} }
v3i :: (x: $T = 0, y: T = 0, z: T = 0) -> Vec(3, T) v3i :: (x: $T = 0, y: T = 0, z: T = 0) -> Vec(3, T)
#modify { return T.(*Type_Info).type == .INTEGER, "use v3f for float arguments"; } #modify { return is_type_integer(T), "use v3f for float arguments"; }
#expand { #expand {
return .{ x = x, y = y, z = z }; return .{ x = x, y = y, z = z };
} }
v4f :: (x: $T = 0, y: T = 0, z: T = 0, w: T = 0) -> Vec4 v4f :: (x: $T = 0, y: T = 0, z: T = 0, w: T = 0) -> Vec4
#modify { return T.(*Type_Info).type == .FLOAT, "use v4i for integer arguments"; } #modify { return is_type_float(T), "use v4i for integer arguments"; }
#expand { #expand {
return .{ x = x, y = y, z = z, w = w }; return .{ x = x, y = y, z = z, w = w };
} }
v4i :: (x: $T = 0, y: T = 0, z: T = 0, w: T = 0) -> Vec(4, T) v4i :: (x: $T = 0, y: T = 0, z: T = 0, w: T = 0) -> Vec(4, T)
#modify { return T.(*Type_Info).type == .INTEGER, "use v4f for float arguments"; } #modify { return is_type_integer(T), "use v4f for float arguments"; }
#expand { #expand {
return .{ x = x, y = y, z = z, w = w }; return .{ x = x, y = y, z = z, w = w };
} }
@ -165,3 +341,19 @@ v4i :: (x: $T = 0, y: T = 0, z: T = 0, w: T = 0) -> Vec(4, T)
quat :: (x: float = 0, y: float = 0, z: float = 0, w: float = 0) -> Quat #expand { quat :: (x: float = 0, y: float = 0, z: float = 0, w: float = 0) -> Quat #expand {
return .{ x = x, y = y, z = z, w = w }; return .{ x = x, y = y, z = z, w = w };
} }
#scope_file
math :: #import "Math";
is_type_integer :: (t: Type) -> bool {
return t.(*Type_Info).type == .INTEGER;
}
is_type_float :: (t: Type) -> bool {
return t.(*Type_Info).type == .FLOAT;
}
is_type_scalar :: (t: Type) -> bool {
return is_type_integer(t) || is_type_float(t);
}